SwapForth

James Bowman jamesb@excamera.com

SVFIG August 22, 2015

These slides are running on a SwapForth system.

Xilinx FPGA on a Papilio Duo board

A 125MHz 32-bit J1b with 32Kbytes of RAM

SwapForth

Slideshow, which is a Forth application. It loads images from
microSD into a VGA framebuffer.

Buttons work the slides, and have a PS/2 keypad hooked up.

That is it: completely standalone.

This board has an external SRAM; easy to hook it up as an
RGB 640 x 480 24-bit framebuffer.

The hardware has only 4 bits for each of R, G and B. That is
16 distinct levels, so the banding is quite apparent.

http://tinyvga.com/vga-timing/640x480060Hz

http://tinyvga.com/vga-timing/640x480@60Hz

Just generate random numbers and add them to the 8-bit
original pixels. You get noise in the image; looks like 'grain’.
This is dither in its simplest form: overcoming a quantizing
channel by adding uncorrelated noise.

http://www.excamera.com/sphinx/article-xorshift.html

http://www.excamera.com/sphinx/article-xorshift.html

Slides were made with beamer KTEX, making a PDF.
ImageMagick converts to raw RGB, then copy to a microSD

convert slides.pdf ’%02d.rgb
cat ?7.rgb > /dev/sdc

SWAPFORTH """

SwapForth is open source, BSD license
https://github.com/jamesbowman/swapforth

https://github.com/jamesbowman/swapforth

portable: many Forths target one piece of hardware —
SwapForth runs on multiple hosts. Choice is good!

It has enough features to be useful in real applications.
Heavy emphasis on testing for a solid system.

It is efficient, e.g. it compiles to native code: no interpreter.

Lastly, it is a strictly standard ANS Forth: no surprises.

Targets

Might seem like a strange choice for a target. Forth running
under Python. But Python is very widely supported, and is
excellent glue.

You can select the type of target on the command line! Big-
and little-endian also. Not a very efficient implementation, of

course. Took a couple of hours to write. Many things are

16_ 32_ 64_bit adict;onary. |
performs OK
for testing

noe. py
|

NOCLEVS
(PN TT40)

=

L

CoMMONS
(FORTH)

nuc.py is the nucleus, written in native code, here Python. It
implements just enough of Forth to be able to compile code
from the console.

Then the rest of the system (“common™) is fed to it through
the console, which builds the complete Forth.

The Python build verifies that all the “common” code passes
the ANS tests for 16-, 32- and 64-bit hosts.

Travis Cl is a continuous integration system.
https://travis-ci.org/

They build your project for you, on an instance created just for
that purpose. Is integrated with github, and triggered by every

commit. Free for open-source projects.

https://travis-ci.org/

Jamesbowman f swapforth - That little green button at the bottom means everything is

orth s crazs e 251 ANS e — _ passing the tests. The tests take about a minute to run.

—— . If something breaks, within a minute or so that badge turns
= red and | get an email.

o e

swapmnh

J1a

A

adars

RAM

8Kx16

ot

datak

instruction

Decode

The J1 is 5 years old now.

The Jla is a slightly stripped-down version. Multi-bit shift
instructions are gone. It now works with simpler RAMs.
Stacks are bi-directional shift registers.

It is currently 124 lines of Verilog.

https://github.com/jamesbowman/swapforth/blob/master/jla/verilog/jl.v

https://github.com/jamesbowman/swapforth/blob/master/j1a/verilog/j1.v

R/W means one read port, one write port.

Almost all the gates are in the ALU, which is as it should be.
There are two stacks (D and R), each 16 deep by 16 bits wide.
Small enough to fit easily on almost any FPGA, and some

8K R/W RAM
500 LUT, 512 bits

which is really, really small

2.1 ANS Core Words

Jla SwapForth implements most of the core ANS 94 Forth standard. Tmple-
mented words are:

! # #> #s ’ (% */ */mod + +! #loop , - . ." / /mod
0< 0= 1+ 1- 2! 2% 2/ 2@ 2drop 2dup 2over 2swap : ; < <# =
> >body >in >number >r 7dup @ abort abs accept align aligned
allot and base begin bl ¢! ¢, c@ cell+ cells char char+ chars
constant count c¢r create decimal depth do does> drop dup else
emit evaluate execute exit fill find fm/mod here hold i if
immediate invert j key leave literal loop lshift m* max min
mod move negate or over postpone quit r> r@ recurse repeat rot
rshift s" s>d sign sm/rem source space spaces state swap then
type u. u< um* um/mod unloop until variable while word xor [
[’] [char]]

These core words abort" environment? are not implemented. Jla Swap-
Forth also implements the following standard words:

.(.r .s /string 0<> 0> :noname <> 7do again ahead case
cmove cmove> compile, d+ d. d.r d0= d2* dabs dnegate dump
endcase endof erase false hex key? m+ marker ms nip of pad
parse refill restore-input save-input sliteral throw true tuck
u.r u> unused within words [compile]

Double numbers are supported using the standard . suffix. The Forth 200x
number prefixes are supported: $ for hex, # for decimal, % for binary, and *¢?
for character literals. parse-name is also implemented.

The complete Forth is currently 4.7K. This includes all of the
ANS CORE words. The compiler produces native Jla code,
but to save space does not do much optimization.

Everything works just as you would expect - no surprises!

Verip

Verilator

| intro | Download | Faq | Docs | emai | Activity | tssues | news JETTN Forums | |
Introduction to Verilator
Written by Wilson Snyder <wsnyder@wsnyder.org>, with Duane Galbi and Paul Wasson <pmwass
Summary

Verilator is the fastest free Verilog HDL simulator, and beats most commercial simulators. |t compib
assertions into C++ or SystemC code. It is designed for large projects where fast simulation perfor
CPUs for embedded software design teams.

Please do not download this program if you are expecting a full featured replacement for NC-Verilo
Icarus instead.) However, if you are looking for a path to migrate synthesizable Verilog to C++ or S
Verilog compiler for you.

Verilator supports the synthesis subset of Verilog, plus initial statements, proper blocking/non-biock
supports very simple forms of SystemVerilog assertions and coverage analysis. Verilator supports !
constructs being added as users request them.

Verilator has been used to simulate many very large multi-million gate designs with thousands of m

Performance

Verilator does not simply convert Verilog HDL to C++ or SystemC. Direct translation alone is fairty «
oompiesyutcodeinm a much faster optimized model, which is in turn wrapped inside a C++/Sys

PP - —

OK, sounds great... how do you run it?
The Jla CPU is written in Verilog, so one way is to run it on a
Verilog simulator. Verilator is an open source Verilog compiler

that produces C++, so you get a linkable library.

TSR ERT N e ' When hardware people talk about running RTL simulations

they're thinking of waves like this.
And they are useful for debugging low-level problems.

But past a certain point the way to test out a computer is to

use it.

bl http://gtkwave.sourceforge.net/

e e e

http://gtkwave.sourceforge.net/

Verilator compiles the verilog to C++.
A small piece of C/Python glue makes this look quite like a

serial interface.

Ve_ﬂw& /d C+—f-‘ [pi Then the Python shell can talk to it, just as if it were a

physical UART.

L

Shelf |

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~ °)))
abcdefghi jklmnopqrstuvwxyz{ |}~ Here is the J1a simulator running the standard ANS CORE

SHOULD SEE 0-9 SEPARATED BY A SPACE:
294E €] tests. It takes a few seconds.

; :) (WITH NO SPACES): Execution speed is quite good; on a laptop it runs at about
(0U SHOULD SEE A-G SEPARATED BY A SPACE: 30MHz.
EHEUE[IFSEE 6.5 SEPARATED BY TWO SPACES. Can run a simulation of the HDL at interactive speeds.
YOU SHEUL; S;E TWO SEPARATE LINES:
LINE 1

LINE 2

'OU SHOULD SEE THE NUMBER RANGES OF SIGNED AND UNSIGNED NUMBERS:
SIGNED: -8086@ 7FFF

UNSIGNED: @ FFFF

End of Core word set tests

At end of tests: 60 bytes free

Base system: 3368 bytes free

Loaded 202 words
-

This also is included in the continuous integration test. So

jamesbewman ! swapforth Bunmrne 1

N _ every checkin:

builds the nucleus from nuc.fs
builds the CPU from the Verilog

executes the nucleus on it

which builds the rest of SwapForth from source
which then runs the ANS CORE test

Takes about 3 seconds.

https://travis-ci.org/jamesbowman/swapforth/jobs/756825710

o e

swaP fort

https://travis-ci.org/jamesbowman/swapforth/jobs/75825710

It runs on the Lattice iCEstick very well. Built with the

IceStorm tools.
What use is it, apart from computing the future date of

Easter?

. http://excamera.com/sphinx/article-jla-swapforth.html
"'Iim”|”!H||HIFH||“H|||“||||!|. - http . //WWW .clifford. at/icestorm/

http://excamera.com/sphinx/article-j1a-swapforth.html
http://www.clifford.at/icestorm/

This is the LabJack
USB meets GPIOs. Has PC-side library for controlling from

scripts.

https://labjack.com/

https://labjack.com/

This is the FTDI MPSSE cable
USB meets GPIOs. Some protocols built-in. Has PC-side
library for controlling from scripts.

http://www.ftdichip.com/Products/Cables/USBMPSSE.htm

http://www.ftdichip.com/Products/Cables/USBMPSSE.htm

Bus Pirate. USB meets GPIOs. A PIC runs the GPIOs, also
12C SPI, JTAG etc.

Interactive; there is a CLI running on the UART.

Protocols are fixed: need to update flash for each new
protocol.

Which is how | bricked mine.

http://dangerousprototypes.com/docs/Bus_Pirate

http://dangerousprototypes.com/docs/Bus_Pirate

It costs $22 in singles, cheapest!
USB up to 460 Kbps
Interactive GPIO probing - the command-language is built-in!

And for protocols, just send the code as a preamble. Code is

F I D I U S B in RAM, so the next reboot puts it back to 'factory’ state.

24 GPIO
programmable!

J1a aims to be the smallest useful interactive Forth machine.
J1b is larger. It is a 32-bit version, more RAM, fuller Forth.
Like J1a, it builds and runs under Verilator and on an FPGA.

J1b

GADGET
FACTORY

J1b is still a minimalist CPU, e.g.:
e doesn’t even have subtract
e only word memory access, so C@ and C! are subroutines

Compare with ZPUino which is optimized for C, runs at
100MHz.

http://www.alvie.com/zpuino/

http://www.alvie.com/zpuino/

This is a full 32-bit Forth, so it can run ANS Forth code.
For example, the FT800 driver | showed here at SVFIG last
time runs very well, using bit-banging GPIO.
https://github.com/jamesbowman/forth-ft800

https://github.com/jamesbowman/forth-ft800

Jla J1b FT900

word size 16 32 32

memory 8K 32K 320K

fib2 (ms) 631 47 36
fib2 (M clocks) 7.5 5.8 3.6

Comparison of three current targets.

The benchmark comparison is of course dependent on clock
speed,

fib2 is at:

https://atariwiki.strotmann.de/wiki/Wiki.jsp?page=Forth),20Benchmarks

https://atariwiki.strotmann.de/wiki/Wiki.jsp?page=Forth%20Benchmarks

BYE

