
SwapForth

James Bowman jamesb@excamera.com

SVFIG August 22, 2015

These slides are running on a SwapForth system.

Xilinx FPGA on a Papilio Duo board

A 125MHz 32-bit J1b with 32Kbytes of RAM

SwapForth

Slideshow, which is a Forth application. It loads images from

microSD into a VGA framebuffer.

Buttons work the slides, and have a PS/2 keypad hooked up.

That is it: completely standalone.

This board has an external SRAM; easy to hook it up as an

RGB 640 × 480 24-bit framebuffer.

The hardware has only 4 bits for each of R, G and B. That is

16 distinct levels, so the banding is quite apparent.

http://tinyvga.com/vga-timing/640x480@60Hz

http://tinyvga.com/vga-timing/640x480@60Hz

Just generate random numbers and add them to the 8-bit

original pixels. You get noise in the image; looks like ’grain’.

This is dither in its simplest form: overcoming a quantizing

channel by adding uncorrelated noise.

http://www.excamera.com/sphinx/article-xorshift.html

http://www.excamera.com/sphinx/article-xorshift.html

Slides were made with beamer LATEX, making a PDF.

ImageMagick converts to raw RGB, then copy to a microSD

convert slides.pdf %02d.rgb

cat ??.rgb > /dev/sdc

SwapForth is open source, BSD license

https://github.com/jamesbowman/swapforth

https://github.com/jamesbowman/swapforth

USEFUL!

portable: many Forths target one piece of hardware –

SwapForth runs on multiple hosts. Choice is good!

It has enough features to be useful in real applications.

Heavy emphasis on testing for a solid system.

It is efficient, e.g. it compiles to native code: no interpreter.

Lastly, it is a strictly standard ANS Forth: no surprises.

Targets

Might seem like a strange choice for a target. Forth running

under Python. But Python is very widely supported, and is

excellent glue.

16- 32- 64-bit

performs OK

for testing

You can select the type of target on the command line! Big-

and little-endian also. Not a very efficient implementation, of

course. Took a couple of hours to write. Many things are

trivial: for example the stacks are lists, and the dictionary is...

a dictionary.

nuc.py is the nucleus, written in native code, here Python. It

implements just enough of Forth to be able to compile code

from the console.

Then the rest of the system (“common”) is fed to it through

the console, which builds the complete Forth.

The Python build verifies that all the “common” code passes

the ANS tests for 16-, 32- and 64-bit hosts.

Travis CI is a continuous integration system.

https://travis-ci.org/

They build your project for you, on an instance created just for

that purpose. Is integrated with github, and triggered by every

commit. Free for open-source projects.

https://travis-ci.org/

That little green button at the bottom means everything is

passing the tests. The tests take about a minute to run.

If something breaks, within a minute or so that badge turns

red and I get an email.

J1a

The J1 is 5 years old now.

The J1a is a slightly stripped-down version. Multi-bit shift

instructions are gone. It now works with simpler RAMs.

Stacks are bi-directional shift registers.

It is currently 124 lines of Verilog.

https://github.com/jamesbowman/swapforth/blob/master/j1a/verilog/j1.v

https://github.com/jamesbowman/swapforth/blob/master/j1a/verilog/j1.v

8K R/W RAM

500 LUT, 512 bits

which is really, really small

R/W means one read port, one write port.

Almost all the gates are in the ALU, which is as it should be.

There are two stacks (D and R), each 16 deep by 16 bits wide.

Small enough to fit easily on almost any FPGA, and some

CPLDs.

The complete Forth is currently 4.7K. This includes all of the

ANS CORE words. The compiler produces native J1a code,

but to save space does not do much optimization.

Everything works just as you would expect - no surprises!

OK, sounds great... how do you run it?

The J1a CPU is written in Verilog, so one way is to run it on a

Verilog simulator. Verilator is an open source Verilog compiler

that produces C++, so you get a linkable library.

When hardware people talk about running RTL simulations

they’re thinking of waves like this.

And they are useful for debugging low-level problems.

But past a certain point the way to test out a computer is to

use it.

http://gtkwave.sourceforge.net/

http://gtkwave.sourceforge.net/

Verilator compiles the verilog to C++.

A small piece of C/Python glue makes this look quite like a

serial interface.

Then the Python shell can talk to it, just as if it were a

physical UART.

Here is the J1a simulator running the standard ANS CORE

tests. It takes a few seconds.

Execution speed is quite good; on a laptop it runs at about

30MHz.

Can run a simulation of the HDL at interactive speeds.

This also is included in the continuous integration test. So

every checkin:

builds the nucleus from nuc.fs

builds the CPU from the Verilog

executes the nucleus on it

which builds the rest of SwapForth from source

which then runs the ANS CORE test

...

Takes about 3 seconds.

https://travis-ci.org/jamesbowman/swapforth/jobs/75825710

https://travis-ci.org/jamesbowman/swapforth/jobs/75825710

It runs on the Lattice iCEstick very well. Built with the

IceStorm tools.

What use is it, apart from computing the future date of

Easter?

http://excamera.com/sphinx/article-j1a-swapforth.html

http://www.clifford.at/icestorm/

http://excamera.com/sphinx/article-j1a-swapforth.html
http://www.clifford.at/icestorm/

This is the LabJack

USB meets GPIOs. Has PC-side library for controlling from

scripts.

https://labjack.com/

https://labjack.com/

This is the FTDI MPSSE cable

USB meets GPIOs. Some protocols built-in. Has PC-side

library for controlling from scripts.

http://www.ftdichip.com/Products/Cables/USBMPSSE.htm

http://www.ftdichip.com/Products/Cables/USBMPSSE.htm

Bus Pirate. USB meets GPIOs. A PIC runs the GPIOs, also

I2C SPI, JTAG etc.

Interactive; there is a CLI running on the UART.

Protocols are fixed: need to update flash for each new

protocol.

Which is how I bricked mine.

http://dangerousprototypes.com/docs/Bus_Pirate

http://dangerousprototypes.com/docs/Bus_Pirate

FTDI USB

24 GPIO

programmable!

It costs $22 in singles, cheapest!

USB up to 460 Kbps

Interactive GPIO probing - the command-language is built-in!

And for protocols, just send the code as a preamble. Code is

in RAM, so the next reboot puts it back to ’factory’ state.

J1b

J1a aims to be the smallest useful interactive Forth machine.

J1b is larger. It is a 32-bit version, more RAM, fuller Forth.

Like J1a, it builds and runs under Verilator and on an FPGA.

32-bit

32K RAM

150+ MIPS

J1b is still a minimalist CPU, e.g.:

• doesn’t even have subtract

• only word memory access, so C@ and C! are subroutines

Compare with ZPUino which is optimized for C, runs at

100MHz.
http://www.alvie.com/zpuino/

http://www.alvie.com/zpuino/

This is a full 32-bit Forth, so it can run ANS Forth code.

For example, the FT800 driver I showed here at SVFIG last

time runs very well, using bit-banging GPIO.

https://github.com/jamesbowman/forth-ft800

https://github.com/jamesbowman/forth-ft800

J1a J1b FT900

word size 16 32 32

memory 8K 32K 320K

fib2 (ms) 631 47 36

fib2 (M clocks) 7.5 5.8 3.6

Comparison of three current targets.

The benchmark comparison is of course dependent on clock

speed,

fib2 is at:
https://atariwiki.strotmann.de/wiki/Wiki.jsp?page=Forth%20Benchmarks

https://atariwiki.strotmann.de/wiki/Wiki.jsp?page=Forth%20Benchmarks

BYE

